James Collins: Nutrition for the Elite Footballer

James Collins: Nutrition for the Elite Footballer

Practical considerations in Elite Football

James Collins a Sport Nutritionist at CHHP and for Arsenal Football Club collaborates with Ian Rollo, Senior Scientist at Gatorade Sports Science Institute to analyse and advise on nutrition for the Elite Footballer.

Key Points

    • The diet for football must first meet the energy needs of day-to-day training. Carbohydrate intake should be prioritized to ensure players have appropriate energy for intense training and match performances. Protein-based recovery strategies allow players muscles to adapt to the training stimulus.
    • Match days regularly provide the greatest challenge. Players need to practice strategies in training before adopting in competition. With congested fixture schedules, post-match recovery is vital and some innovation is required to meet nutrient targets whilst in transit.
    • The physique of a footballer can influence performance. Maintaining body fat and muscle mass within an optimal range can preserve power to mass ratio, allowing for more efficient movement during training and matches.
    • Appropriate use of sports nutrition products to meet fuelling and recovery needs should be governed by a robust sports nutrition policy.
    • Ongoing education is an integral part of the sports nutrition service. This should consist of face-to-face work with players, coaches and other educational touch points to create the nutritional culture at the club


Nutrition plays an important part in maintaining players’ health and positively affecting performance. At the elite level, top professionals can play up to 50 games a season, which for some, includes substantial worldwide travel for Champions League or national team fixtures. Elite players will typically play 1-2 games a week. Thus, training cycles are carefully periodised to stress energy systems and maintain fitness levels, whilst preventing accumulation of fatigue, which could lead to an increased risk of illness and injury (Dupont et al., 2010; Carling et al., 2012).

Football is an intermittent sport, with elite players performing low-intensity movements for more than 70% of the game, interspersed with approximately 150-250 intense actions (Rampinini et al., 2007). Elite players can cover distances up to but rarely exceeding 13 km in a competitive match (Mohr et al., 2003). Both anaerobic and aerobic energy systems are heavily utilized, with an overall energy cost of approximately 2,000 kcal during a match depending on individual body composition and distance covered (Bangsbo, 2014; Bangsbo et al., 2006). Interestingly, the last five seasons have seen an increase in distance covered at high-intensity during Champions League matches. Furthermore, of note, is that the Champions League has resulted in a greater incidence of fixture congestion and consequently a higher rate of muscle injury (Bengtsson et al., 2014).

Due to the unique physical demands of football, carbohydrate stores (liver and muscle glycogen) are the most important for energy production. Appropriate carbohydrate intake before, during and after exercise ensures players have appropriate energy for training and matches. Consistent recovery strategies allow players’ muscles to recover quickly in the hours post-exercise and adapt to the training stimulus longer term. Food and fluid intake at the right timing can improve player “robustness” decreasing the risk of illness and injury. During periods of fixture congestion, players with limited recovery time are at risk of not fully restoring various physiological parameters affected by match play, such as muscle glycogen content, sarcoplasmic reticulum function and maximal voluntary contraction force (Krustrup et al., 2011). This will ultimately limit the players’ ability to sprint, jump and perform repeated intense exercise (Yo- Yo intermittent recovery test level 2) (Rollo et al., 2014a). During mid-season, the strain of domestic and international matches with travel can reduce recovery time and negatively impact the players’ “readiness to perform.” This is where nutrition strategies need to be integrated with other recovery modalities to have a pivotal role in muscular recovery and must take into account the stresses of training and competition. Thus, the sports nutritionist or sports dietitian has a varied role working within professional football. Understanding the key scientific principles helps to deliver nutrition support in team sports. However, understanding the cultural landscape of football is of utmost importance if the nutritionist is to ultimately impact on behaviour change and performance.

Fundamentally, the nutritionist determines the overall sports nutrition philosophy at the club, which supports the club’s training and performance outcomes. From a team perspective, nutrition strategy encompasses match/training day preparation/recovery, hydration, body composition, travel, food service and supplementation. On an individual level the sports nutritionist consults with players, working to shape their diet to support their health and performance. Primarily, this involves educating and up-skilling players to understand the science behind their dietary strategies (e.g., timing, type and quantity of food). As part of the ongoing support with players, effective monitoring of outcomes of dietary status is crucial. This is because any ongoing issues in these areas, i.e., nutrient status, recovery, body composition and hydration can negatively impact a players training adaptation or match performance. To this end, the following article will aim to provide an insight into how sports nutrition is implemented to improve football performance through the lens of practitioners working in the professional game.

Read the full article Practical Considerations in Elite Football

Practical Considerations in Elite Football | [James Collins | Ian Rollo ]